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INTRODUCTION 

Chronic kidney disease affects an estimated 1 in 7 adults in the United States [1]. At the endpoint of 
disease progression, end-stage kidney disease (ESKD), people living with kidney disease are on dialysis 
and require a kidney transplant to survive [2]. Although the cause is not well understood, individuals living 
with ESKD experience higher rates of frailty than their healthy counterparts [3,4]. Frailty, most commonly 
described by the Fried Frailty Phenotype [5], is associated with many adverse health outcomes, including 
an increased risk of death following kidney transplantation [3,6]. Because of the increased risk of poor 
outcomes, frailty is often part of the risk assessment for kidney transplant qualification and is associated 
with a lower likelihood of placement on the kidney transplant waiting list  [3,6] 

Prehabilitation (physical therapy performed prior to transplantation) has been shown to reduce frailty in 
individuals living with ESKD [3]; however, current protocols require frequent in-person visits with a physical 
therapist. This can be burdensome for individuals with ESKD because the prehabilitation can last years 
while they wait for a kidney to be available [7], and many individuals may struggle to afford long-term 
physical therapy or face difficulty with obtaining insurance coverage for the physical therapy [8]. 
Accessible at-home alternatives are preferable, but the prehabilitation must be performed at the 
appropriate exertion for the prescribed length of time to be efficacious. In this work, we investigate 
whether data collected through a smartwatch worn on the dominant wrist is sufficient to automatically 
predict exercise type and exertion during prehabilitation exercises and answer the following questions: 

• Which machine learning models perform best at predicting exertion and exercise type? 

• Do subject-specific models outperform global models? 

• Does the presence of sensitive attributes, such as age, weight, and height, improve predictions? 

METHODS 

Experimental design 

We recruited six participants between the ages of 55 and 80 (mean age: 67, 3 women). Participants 
exercised for less than 150 minutes weekly and had no self-disclosed disabilities or chronic conditions. 
Participants were fitted with an Empatica EmbracePlus [9] smartwatch on their dominant wrist. Data was 
recorded at rest while the participants completed surveys, during baseline testing (Fried Frailty Phenotype 
[5], 6-minute walk test, timed up-and-go), and during the prehabilitation protocol. The prehabilitation 
protocol was developed by Houston Methodist Hospital for patients being evaluated for kidney 
transplantation. It consists of resistance band exercises (squats, rows, chest press, hip abduction, seated 
knee extension, and glute bridges) performed in 3 sets of 10, followed by 20 minutes of aerobic exercise on 
a treadmill. For all exercises, the participants were asked to try to maintain a rating of perceived exertion 
(RPE) of 3-4 on the Modified Borg Scale [10], except for an additional set of squats and the last 5 minutes 
on the treadmill, where they were asked to try to maintain an RPE of about 7. Participants self-selected 
resistance band strength as well as treadmill speed and incline. During the prehabilitation portion of the 
experiment, participants were asked their RPE between sets of resistance band exercises or approximately 
once per minute during the aerobic exercise. After prehabilitation, participants rested with the watch on 
until their reported RPE was 1 or lower for at least one minute. 
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Machine learning and analysis 

Preprocessing 

Data from the EmbacePlus was interpolated, averaged, or a value was calculated to create tabular data 
representing 5-second windows with no overlap for each participant. The features included were pulse 
rate, number of blood volume pulses, electrodermal activity, steps, body temperature, triaxial actigraphy 
counts, the vector magnitude of the actigraphy counts, the standard deviation of the blood volume pulse 
and accelerometer data, and the spectral power of the accelerometer data. Features were selected based 
on data available from the Empatica EmbracePlus. 

We predicted exercise type (at rest before performing any exercises, performing baseline testing, taking a 
break between exercises or immediately following exercise, resistance exercise, aerobic exercise) and 
participant reported RPE. As we only asked for their RPE each minute, the RPE was interpolated to the 
nearest value in each direction. The tabular data was split into train, validation, and test sets in an 
80/10/10 split. The train set was oversampled to balance classes using SMOTE [11], a technique that 
creates synthetic data for minority classes in a dataset, and data was scaled using the minimum and 
maximum values in the train set. 

Subject-specific models 

Five models were trained for five of the six participants and both prediction tasks (RPE and exercise type): 
random forest (RF), logistic regression (LR), multi-layer perceptron model (MLP), Adaboost, and naïve 
Bayes classifier (NBC). The train set was used with three-fold cross-validation to tune hyperparameters for 
each model. The best model for each participant was selected by performance on the validation set, which 
was measured using balanced accuracy adjusted for chance. The best-performing model was then 
assessed using the test set, and performance was again measured using balanced accuracy adjusted for 
chance.  

After the best model was determined, the mean accuracy decrease for each feature was calculated with 
n=50 repeats. 

Global models 

The same steps were repeated for the global models 
and performed twice, first with the same features 
(global) and then with age, height, and weight (global 
with sensitive attributes) because prior work 
suggests that physiological features can improve 
RPE prediction performance [12]. Data was again 
split into train/validation/test along an 80/10/10 
split. We chose this split rather than a leave-one-out 
split for better comparison to the subject-specific 
models. All 6 participants’ data was used for the 
global models. 

Table 1. Test performance of random forest 
models 

Prediction 
Task 

Chance-Adjusted Balanced Accuracy 
Subject-
Specific 

(mean±std) 
Global 

Global with 
Sensitive 
Attributes 

RPE 89.8±5.1% 91.2% 92.6% 
Exercise Type 93.7±5.4% 96.8% 97.5% 

 

 
Figure 1. Validation accuracies for all machine 
learning models on the RPE predicting task. 
Balanced accuracy is adjusted for chance, 
and error bars represent standard deviation. 
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RESULTS 

Random forest performs best for predicting RPE and exercise type 

Random forest models performed best for predicting both RPE and exercise type across all model types 
with an average validation accuracy of 91.3%, 84.3%, and 84.3% for the RPE task, respectively (Figure 1) 
and 95.7%, 94.1%, and 94.9%, respectively, for the exercise type task (not shown). 

Subject-specific models perform similarly 
to global models, and sensitive attributes 
did not significantly impact accuracy 

All random forest models performed 
similarly across prediction tasks, model 
types, and the presence of extra sensitive 
attributes, with an average prediction 
accuracy of 93.6% across model types and 
prediction tasks (Table 1). Incorrect 
predictions are usually close to the true 
predictions (Figure 3). 

Feature importance varied between 
individuals 

 Although pulse rate, electrodermal activity 
(EDA), and skin temperature were the most 
important features for four of the 
participants and the global models (with and 
without sensitive attributes), the relative 
ordering and overall mean accuracy 
decrease varied greatly (sample participants 
shown in Figure 2). 

DISCUSSION 

Our preliminary work suggests that random 
forest models can predict exercise type and 
RPE with over 90% balanced accuracy. Even in 
cases where the RPE prediction was incorrect, 
the random forest models still typically 
predicted a value close to the actual value 
(Figure 3). Because of the interpolation method 
for RPE (both directions to the nearest RPE 
value recorded), it is possible that a different 
interpolation scheme (i.e., one that accounts 
for transitions between reported RPE) or using 
linear regression with linear interpolation would 
have resulted in an even higher performance. 

These results also show that over 90% accuracy can be achieved with a global model, even without the 
participants’ sensitive attributes; however, this analysis used a train/validation/test split rather than a 
leave-one-out method to make the global models more comparable to the subject-specific models. 
Individuals whose data is not included in the global dataset would likely have lower accuracy, and the 
additional features would likely be more useful for prediction in these cases.  

 
Figure 3. Test predictions for the global random 
forest model with sensitive attributes. 

 
 

 
Figure 2: Five most important features for 
participants C3 (top) and C6 (bottom). Y and Z counts 
represent actigraphy counts for those axes. n=50 
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CONCLUSION 

This study demonstrates that RPE and exercise type can be predicted from smartwatch data with over 90% 
accuracy using both subject-specific and global random forest models. Our work lays the foundation for a 
platform to remotely monitor adherence to prehabilitation and offer real-time guidance to improve 
adherence during sessions. Future work with a larger sample size, including end-stage kidney disease 
patients, is needed to confirm the results before developing a monitoring platform. 
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