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INTRODUCTION

Chronic kidney disease affects an estimated 1 in 7 adults in the United States [1]. At the endpoint of
disease progression, end-stage kidney disease (ESKD), people living with kidney disease are on dialysis
and require a kidney transplant to survive [2]. Although the cause is not well understood, individuals living
with ESKD experience higher rates of frailty than their healthy counterparts [3,4]. Frailty, most commonly
described by the Fried Frailty Phenotype [5], is associated with many adverse health outcomes, including
an increased risk of death following kidney transplantation [3,6]. Because of the increased risk of poor
outcomes, frailty is often part of the risk assessment for kidney transplant qualification and is associated
with a lower likelihood of placement on the kidney transplant waiting list [3,6]

Prehabilitation (physical therapy performed prior to transplantation) has been shown to reduce frailty in
individuals living with ESKD [3]; however, current protocols require frequent in-person visits with a physical
therapist. This can be burdensome for individuals with ESKD because the prehabilitation can last years
while they wait for a kidney to be available [7], and many individuals may struggle to afford long-term
physical therapy or face difficulty with obtaining insurance coverage for the physical therapy [8].
Accessible at-home alternatives are preferable, but the prehabilitation must be performed at the
appropriate exertion for the prescribed length of time to be efficacious. In this work, we investigate
whether data collected through a smartwatch worn on the dominant wrist is sufficient to automatically
predict exercise type and exertion during prehabilitation exercises and answer the following questions:

e Which machine learning models perform best at predicting exertion and exercise type?
e Do subject-specific models outperform global models?

e Doesthe presence of sensitive attributes, such as age, weight, and height, improve predictions?
METHODS

Experimental design

We recruited six participants between the ages of 55 and 80 (mean age: 67, 3 women). Participants
exercised for less than 150 minutes weekly and had no self-disclosed disabilities or chronic conditions.
Participants were fitted with an Empatica EmbracePlus [9] smartwatch on their dominant wrist. Data was
recorded at rest while the participants completed surveys, during baseline testing (Fried Frailty Phenotype
[5], 6-minute walk test, timed up-and-go), and during the prehabilitation protocol. The prehabilitation
protocol was developed by Houston Methodist Hospital for patients being evaluated for kidney
transplantation. It consists of resistance band exercises (squats, rows, chest press, hip abduction, seated
knee extension, and glute bridges) performed in 3 sets of 10, followed by 20 minutes of aerobic exercise on
a treadmill. For all exercises, the participants were asked to try to maintain a rating of perceived exertion
(RPE) of 3-4 on the Modified Borg Scale [10], except for an additional set of squats and the last 5 minutes
on the treadmill, where they were asked to try to maintain an RPE of about 7. Participants self-selected
resistance band strength as well as treadmill speed and incline. During the prehabilitation portion of the
experiment, participants were asked their RPE between sets of resistance band exercises or approximately
once per minute during the aerobic exercise. After prehabilitation, participants rested with the watch on
until their reported RPE was 1 or lower for at least one minute.



Machine learning and analysis

Preprocessing

Data from the EmbacePlus was interpolated, averaged, or a value was calculated to create tabular data
representing 5-second windows with no overlap for each participant. The features included were pulse
rate, number of blood volume pulses, electrodermal activity, steps, body temperature, triaxial actigraphy
counts, the vector magnitude of the actigraphy counts, the standard deviation of the blood volume pulse
and accelerometer data, and the spectral power of the accelerometer data. Features were selected based
on data available from the Empatica EmbracePlus.

We predicted exercise type (at rest before performing any exercises, performing baseline testing, taking a
break between exercises or immediately following exercise, resistance exercise, aerobic exercise) and
participant reported RPE. As we only asked for their RPE each minute, the RPE was interpolated to the
nearest value in each direction. The tabular data was split into train, validation, and test sets in an
80/10/10 split. The train set was oversampled to balance classes using SMOTE [11], a technique that
creates synthetic data for minority classes in a dataset, and data was scaled using the minimum and
maximum values in the train set.

Subject-specific models

Five models were trained for five of the six participants and both prediction tasks (RPE and exercise type):
random forest (RF), logistic regression (LR), multi-layer perceptron model (MLP), Adaboost, and naive
Bayes classifier (NBC). The train set was used with three-fold cross-validation to tune hyperparameters for
each model. The best model for each participant was selected by performance on the validation set, which
was measured using balanced accuracy adjusted for chance. The best-performing model was then
assessed using the test set, and performance was again measured using balanced accuracy adjusted for
chance.

After the best model was determined, the mean accuracy decrease for each feature was calculated with
n=50 repeats.

1.0
Global models
o I Subject-Specific
The same steps were repeated for the global models Global
and performed twice, first with the same features 08

(global) and then with age, height, and weight (global

with sensitive attributes) because prior work &
suggests that physiological features can improve § 06
RPE prediction performance [12]. Data was again §
split into train/validation/test along an 80/10/10 3
split. We chose this split rather than a leave-one-out % 0.4 |
split for better comparison to the subject-specific g
models. All 6 participants’ data was used for the )
global models. 0.2 |
Table 1. Test performance of random forest 0.0
models RF LR MLP AB NBC
Chance-Adjusted Balanced Accuracy Model
Prediction Subject- Global with Figure 1. Validation accuracies for all machine
Task (':;’:::s':d) Global :;::':'t‘;es learning models on the RPE predicting task.
RPE 89.85.1% | 91.2% 92.6% Balanced accuracy is adjusted for chance,
Exercise Type | 93.7#5.4% | 96.8% 97.5% and error bars represent standard deviation.




RESULTS

Random forest performs best for predicting RPE and exercise type

Random forest models performed best for predicting both RPE and exercise type across all model types
with an average validation accuracy of 91.3%, 84.3%, and 84.3% for the RPE task, respectively (Figure 1)
and 95.7%, 94.1%, and 94.9%, respectively, for the exercise type task (hot shown).

Subject-specific models perform similarly
to global models, and sensitive attributes
did not significantly impact accuracy

All random forest models performed
similarly across prediction tasks, model
types, and the presence of extra sensitive
attributes, with an average prediction
accuracy of 93.6% across model types and
prediction tasks (Table 1). Incorrect
predictions are usually close to the true
predictions (Figure 3).

Feature importance varied between
individuals

Although pulse rate, electrodermal activity
(EDA), and skin temperature were the most
important features for four of the
participants and the global models (with and
without sensitive attributes), the relative
ordering and overall mean accuracy
decrease varied greatly (sample participants
shown in Figure 2).

DISCUSSION

Our preliminary work suggests that random
forest models can predict exercise type and
RPE with over 90% balanced accuracy. Even in
cases where the RPE prediction was incorrect,
the random forest models still typically
predicted a value close to the actual value
(Figure 3). Because of the interpolation method
for RPE (both directions to the nearest RPE
value recorded), it is possible that a different
interpolation scheme (i.e., one that accounts
for transitions between reported RPE) or using
linear regression with linear interpolation would
have resulted in an even higher performance.
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Figure 2: Five most important features for
participants C3 (top) and C6 (bottom). Y and Z counts
represent actigraphy counts for those axes. n=50
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Figure 3. Test predictions for the global random
forest model with sensitive attributes.

These results also show that over 90% accuracy can be achieved with a global model, even without the
participants’ sensitive attributes; however, this analysis used a train/validation/test split rather than a
leave-one-out method to make the global models more comparable to the subject-specific models.
Individuals whose data is not included in the global dataset would likely have lower accuracy, and the
additional features would likely be more useful for prediction in these cases.
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CONCLUSION

This study demonstrates that RPE and exercise type can be predicted from smartwatch data with over 90%
accuracy using both subject-specific and global random forest models. Our work lays the foundation for a
platform to remotely monitor adherence to prehabilitation and offer real-time guidance to improve
adherence during sessions. Future work with a larger sample size, including end-stage kidney disease
patients, is needed to confirm the results before developing a monitoring platform.
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